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Broad Aim

- We want to know if we can trust the outputs of the LLM

- Natural language has challenge of “Semantic equivalence” - different
sentences can mean the same thing

- At token level model is uncertain between the two forms of the same meaning

- We estimate “Semantic likelihood” - probabilities attached to meaning rather
than standard sequence

* We explain why uncertainty in free-form NLG is different from other settings (SectionEI).

* We introduce semantic entropy—a novel entropy-based uncertainty measure which uses
our algorithm for marginalising over semantically-equivalent samples (Section and show
that it outperforms comparable baselines in extensive ablations with both open- and closed-
book free-form question answering using TriviaQA and CoQA (SectionEf.)

» Through hyperparameter ablations we suggest how to balance the trade-off between sam-
pling diverse and accurate generations for our method as well as baselines (Section and
show that far fewer samples are needed for effective uncertainty than prior work presumes.




Basics of uncertainty estimation

- Total uncertainty of a prediction is the predictive entropy of the output
distribution - This measures the information one has about the output
given the input

- Entropy is highest when the output is minimally informative, all “classes”
have same probability

- Predictive entropy for a point x is conditional entropy of the output
random variable Y with realisation y given x

PE(z) = H(Y | ) = / ply | ) lnply | 2)dy



Challenges in uncertainty estimation for NLG

Semantic Equivalence in LLM output

“The capital of France is Paris” means same as “France’s capital is Paris”

We can formalize semantic equivalence mathematically. Let the space of tokens in a language be
T . The space of all possible sequences of tokens of length N is then Sy = TN, For some sentence

Semantic equivalence relation E(., .) holds any two sentence that means the
same thing

set corresponds to a set of equivalence classes. Each semantic equivalence class corresponds to one
possible meaning that our text can have. That is, for the space of semantic equivalence classes C the
sentences in the set ¢ € C all share a meaning such that Vs, s’ € c: E(s, s).

plelz) = p(s|z) =) ]]n(si|s<i,2):

sEc sEc 1




Challenges in uncertainty estimation for NLG

Sampling the extremely high dimension language space

Estimating predictive entropy requires taking an expectation in output-space.
However, the output-space of natural language has O(|T|AN ) dimensions

Variable length generations

Longer sentence -> lower joint likelihood (The joint likelihood of a sequence of
length N shrinks exponentially in N)

Its negative log-probability therefore grows linearly in N, so longer sentences
tend to contribute more to entropy.



Semantic Uncertainty (Main contribution)

“Uncertainty over meanings is more important for most situations than
uncertainty over the exact tokens used to express those meanings”

1. Generation: Sample M sequences {s(!), ..., s(™)} from the predictive distribution of a
large language model given a context x.

2. Clustering: Cluster the sequences which mean the same thing using our bi-directional
entailment algorithm.

3. Entropy estimation: Approximate semantic entropy by summing probabilities that share
a meaning following Eq. (2) and compute resulting entropy. This is illustrated in Table

1. Generat i ON  Step 1: Generating a set of answers from the model

First we sample M sequences {s(!), ..., s(*)} which we will use later to estimate the uncertainty.
These sequences must be sampled according to the distribution p(s | z). In this paper, we sample
these sequences only from a single model using either multinomial sampling or multinomial beam
sampling. We show in Section that the choice of sampling temperature and sampling method
can have a significant impact on the performance of both our method and the baselines. Unlike
Malinin & Gales|(2020), we do not use an ensemble of models. Ensembling would probably improve
performance, but the cost of training multiple independent foundation models is often prohibitive.




Semantic Uncertainty (Main contribution)

2. Clustering

N/ 7

We ope;ationalise E(-,) uging the idea of bi-directional entailment. A sequence, 's, means the sam
thing as a second sequence, s’, if and only if they entail (i.e. logically imply) each other. E.g., “The
capital of France is Paris.” entails “Paris is the capital of France.” because they mean the same thing.

Use the common, NLI task to label entailment, neutral, and contradiction

Algorithm 1 Bidirectional Entailment Clustering

Require: context x, set of segs. {s(?,...,s(*)}, NLI classifier M, set of meanings C' = {{s(V}}
for2 <m < M do

forc € C do > Compare to already-processed meanings.
s(9) « ¢g > Use first sequence for each semantic-class.
left «+ M(cat(z,s(®,“<g/>”, z,5(™)) > Does old sequence entail new one?
right + M/cat(z,s(™), “<g/>”, z,5())) > Vice versa?
if left is entailment and right is entailment then
c+clys™ > Put into existing class.
end if
end for
C « CcU{s"™} > Semantically distinct, gets own class.
end for
return C Note: “Paris.” does not entail “The capital of France is Paris.”




Semantic Uncertainty (Main contribution)

3. Computing the semantic entropy

Add the likelihood of the entire cluster, as a likelihood of each meaning
SP(@) =~ Yple | 2)logpte ) = = 3 ((Zp(s ) s [Lrte| 1))

We do not have access to every possible meaning-class ¢, so we can only
sample c from the distribution induced by the model. To handle this, we
estimate the expectation using Monte-Carlo integration over semantic

equivalence classes C o

SE(z) ~ —|C|™" ) logp(C; | x).

=1




Semantic Uncertainty (Main contribution)

How does this semantic entropy address the challenge of NLG

Generations whose meanings are the same but differ on unimportant tokens
will be added together, which we expect will reduce the effect of the
likelihoods of unimportant tokens although we do not demonstrate this
empirically.

(a) Scenario 1: No semantic equivalence (b) Scenario 2: Some semantic equivalence

Answer Likelihood Semantic likelihood Answer  Likelihood Semantic likelihood

S p(S | J") ZsEcp(S |$) S p(S |ZL') Zsecp(s | I)
Paris 0.5 0.5 Paris 0.5 } 0.9
Rome 0.4 0.4 It’s Paris 0.4 '
London 0.1 0.1 London 0.1 0.1
Entropy 0.94 0.94 Entropy 0.94 0.33




Empirical Evaluation

Let's recall why we need to measure uncertainty in LLMs-

It should offer information about how reliable the model's answers are—that is, very uncertain
generations should be less likely to be correct.

Metric - AUROC metric is equivalent to the probability that a randomly chosen correct answer has a
higher prediction score than a randomly chosen incorrect answer. Higher scores are better, with
perfect uncertainty scoring 1 while a random uncertainty measure would score 0.5



Empirical Evaluation

Semantic - Their proposed method

Normalised - Divides the joint log-probability of each
sequence by the length of the sequence,

Lexical - Average similarity score in the answer set
Predictive - Standard predicted entropy without
length normalization

If the model answered a question correctly then
higher chance that it is sure, so number of distinct
answers (number of clusters C) should be low.

For incorrect answers, it should be higher, which can
be seen in the table
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CoQA 1.27 1.77

TriviaQA 1.89 3.89




Hyperparameter for effective sampling

Increasing the temperature increases the diversity of
samples, expect more diverse generations to cover
the space of possible meanings more fully

Reducing the temperature improves the average
correctness of the answer, more accurate models are
also better at estimating uncertainty.

These two effects compete and the highest AUROC
for semantic entropy and length-normalised entropy
is optimised by an intermediate temperature of 0.5. A
lower temperature would improve accuracy, while a
higher temperature would improve diversity
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Conclusion

Puts forward the issues at free-form NLG entropy
calculation

Proposes:

- the entropy of the distribution over
meanings rather than sequences

- we introduce a novel bidirectional
entailment clustering algorithm which uses
a smaller natural language inference model

Shows the effects of temperature, sampling more
semantic equivalent sentences on entropy, the
proposed method consistently performs better
than the other calculation methods

Github Link - https://github.com/lorenzkuhn/semantic_uncertainty
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Detecting Hallucinations in Large Language Models
Using Semantic Entropy

This repository contains the code necessary to reproduce the short-phrase and sentence-length experiments of
the Nature submission 'Detecting Hallucinations in Large Language Models Using Semantic Entropy".

This repository builds on the original, now deprecated codebase for semantic uncertainty at



https://github.com/lorenzkuhn/semantic_uncertainty

