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Introduction



Current Voice AIs:
- Siri, Google Assistant, Alexa

Modular pipeline:

- How do you feel about them?

- Voice Activity Detection (VAD): Detects when speech starts and ends
- Automatic Speech Recognition (ASR): Converts speech into text
- Natural Language Understanding (NLU): Understands the user's intent
- Natural Language Generation (NLG): Produces a text response
- Text-to-Speech (TTS): Converts the text response back into speech

Motivation



The Three Key Problems with Traditional Systems
High Latency
● latency compounds along the components of pipelines
● total response times of several seconds
● human-to-human conversations: a few hundred milliseconds

Information Bottleneck

Turn-Based Limitations

● Work primarily in the text domain
● Ignore paralinguistic information like emotions, accents, and even background 

sounds that are crucial in natural conversations

● Fundamentally turn-based: assuming that dialogue is a sequence
● Fail to handle interruptions, overlapping speech (amounts for 10 to 20% of 

spoken time), or non-interrupting interjections (real-time feedback like “uh-huh”, 
“I see” or “okay”)



Moshi’s Breakthroughs

Reduced Latency
● A theoretical latency of 160ms and a practical latency of 200ms
● Average latency in natural conversations: 230ms

Multi-stream: Full-Duplex Real-Time Interaction

Removed Information Bottleneck

● Listens and speaks simultaneously
● Allowing for arbitrary conversational dynamics including overlap and 

interruptions

● Understands inputs and generates outputs directly in the audio domain (compress 
audio into “pseudo-words”, predict next audio segment from previous audio)

● Capture both linguistic and non-linguistic cues like tone, emotion, and even silence.



Moshi’s Breakthroughs
Multi-modality
● Moshi benefits from thinking as it speaks
● Textual thoughts help train the model

moshi

/text/

> /sound/



Video Demo
- Live Moshi demo: https://moshi-ai.com/ 
- Youtube Demo Video: https://www.youtube.com/watch?v=hm2IJSKcYvo

https://moshi-ai.com/
https://www.youtube.com/watch?v=hm2IJSKcYvo


Model



Architecture Overview

Helium: A High-Performance Text Language Model
Mimi: A Neural Audio Codec with Residual Vector Quantization (RVQ)
Hierarchical and Streaming Audio Modeling
Inner Monologue: Enhancing Quality through Text-Audio Alignment



Helium 7B LLM



Helium LLM
What is Helium?

7B-parameter text language model

Foundation model for Moshi dialogue system

Pretrained on 2.1T tokens of public English 
data

Built from scratch 

Architecture of Helium

Based on Transformer architecture

RMS normalization at:

● Input of attention blocks
● Feed-forward blocks
● Output linear layer

Rotation positional embeddings (RoPE)
Context length of 4,096 tokens

Flash Attention for efficient training

Gated Linear Units with SiLU activation

My question - Why not the latest flash attention 2?



Some Details
1. Helium is a part of Moshi, but is also 

trained separately on text only data first
2. This pre-trained Helium is then used as 

initialization for the temporal 
transformer

3. Pre-training of Moshi, on unsupervised 
data

4. Post-training with simulated 
multi-stream based on diarization

5. Fine-tuning on the Fisher dataset to 
gain its fully duplex capabilities

6. Final fine tuning on custom internal 
dataset



Some Observations
1. Helium pre-training was done on only 

Text data and no audio

2. Moshi audio batch size was kept pretty 
high at 16h

3. Acoustic delay of 1 or 2 step between 
semantic and acoustic tokens to improve 
quality (more in further section)

My question - Why keep 4k context size? Why not the current 
standard of 128k?



Data used to train Moshi
Text Data (Website scrapings)

- 12.5% of the dataset is from the 
following curated sources: Wikipedia,9 
Wikibooks, Wikisource, Wikinews, 
StackExchange

- The remaining 87.5% of the dataset is 
from Common Crawl

Filtration

- Deduplication: removing of duplicate 
data content

- Language Identification: Use fasttext to 
keep only english language content.

- Quality filtering: Use fasttext classifier

Audio data

Unsupervised Dataset

- 7M hours of English speech
- Single-stream audio (24kHz, mono)
- Transcribed with Whisper large-v3

Fisher Dataset

- 2K hours of phone conversations
- Separate channels for speakers
- Upsampled from 8kHz to 24kHz using AudioSR

Supervised Multi-stream Dataset

- 170 hours of natural/scripted conversations
- Used for TTS model training
- Not used directly for Moshi training



Helium performance on Text datasets
The helium text models is competitive and performs well on standard benchmark tasks

Performs well on QA tasks when compared to models of larger size (Mistral and Gemma)

Why not compare it to Gemma 2 9B?



Moshi Pre-training
– Temporal Transformer in Moshi with Helium, while the Depth Transformer is 
randomly initialized

– We first train on the unsupervised audio dataset, using a single stream of 
audio (this is the first time audio data is introduced)

– In order to prevent catastrophic forgetting, also train half of the time on 
batches of text only data from the same dataset as used for Helium



Moshi Post training
Main aim of post training – To gain its multi-stream 
ability

Speaker Diarization using PyAnnote

- Creates binary mask (1: active, 0: inactive)
- Separates into two streams:

- Main speaker waveform
- Residual speakers waveform

Training Parameters:

- Text stream aligned with main speaker
- No delay between text/audio tokens

Multi-stream Training (Fisher Dataset)

Problem: Simulated data lacks natural overlaps

● Solution: Real conversation data with overlapping speech
● Implementation:

○ 10K batches of 40 min conversations
○ Learns from genuine two-speaker interactions
○ Separate tuning for both transformers

Robust Audio Processing

Challenge: Real-world audio is messy

● Dynamic Gain (-24dB to +15dB)
○ Handles varying user volumes
○ Applies to 50% of training data

● Environmental Noise
○ Uses Deep Noise Suppression challenge data
○ Varies noise levels (-30dB to +6dB)
○ Includes strategic silence periods

● Echo & Reverb Simulation
○ Mimics real-room acoustics
○ Controlled echo delay (100-500ms)
○ Combined effects in 30% of cases

Moshi Fine tuning

(Creates synthetic data for this)

2000 hours of Overlapping Phone 
conversation between users



Moshi Training Loss

Gives the same importance to the text token (k=1), and the combined audio 
tokens.

Alpha_k is set to 100 for semantic tokens, and 1 for acoustic ones.

Cross entropy on the text token

Weighting on different tokens

l_(s,k) is estimated logits from the 
depth transformer, V_(s,k) is GT 
discrete token



Mimi: A hybrid audio tokenizer



Mimi: A hybrid audio tokenizer

● Acoustic tokens model fine audio details and are 
optimized for high-quality reconstruction.

○ Conditioned text-to-audio models
■ Text-to- speech 
■ Text-to-music

● Unconditioned speech generation requires 
combining them with semantic tokens extracted 
from self-supervised speech models.

● Semantic tokens are not causal.
○ computed in an offline manner.

●  Generating acoustic and semantic tokens with separate 
encoders is a computational burden.

● Uses distillation to transfer non-causal, high-level semantic 
information into the tokens produced by a causal model.

○ Allowing for streaming encoding and decoding of 
semantic-acoustic tokens.



Input: Single-channel waveform (24Khz: 

Output: Latent representation: 

L samples of audio, S frames, each with D 
dimensions

Inspiration:

● SoundStream (Zeghidour et al., 2022)
● Encodec (Défossez et al., 2023)

Components:

● SeaNet (Tagliasacchi et al., 2020) autoencoder
● Residual Vector Quantizer (RVQ) (Zeghidour et al., 2022)

Residual convolutional blocks with:

● Combined Dilated and strided convolutions :
○ Dilated Convolutions: Increase the receptive field..
○ Strided Convolutions: Downsample the input, reducing 

the temporal dimension.
● Activation Function: ELU non-linearities (Clevert et al., 2016)
● Weight Normalization (Salimans and Kingma, 20.

Causal convolutions for streaming capability

● 4 blocks with strides: (4,5,6,8) followed by 1D convolution with 
stride 2.

● Output: 24 kHz waveform to latent representation of 12.5 FPS 
and dimension 512.

Encoder Block



Input: Quantized latent representation.
Output: Reconstructed waveform.

Mirrors the encoder but uses 
transposed convolutions to 
upsample the latent representation 
back to the original audio sampling 
rate.

Decoder Block



Split RVQ
Initial Setup of distilling semantic information.

● Inspired by SpeechTokenizer (Zhang et al., 2024b).
● Distills semantic info from WavLM (Chen et al., 2022) into 

the first RVQ level.
● Mimi: Projects 24 kHz waveform to 512-d embeddings at 

12.5 Hz
● WavLM: Projects 16 kHz waveform to 1024-d 

embeddings at 50 Hz.
● Targets for distillation

○ Downsample input to 16 kHz for WavLM 
embeddings.

○ Apply non-causal average pooling (stride = 4, 
kernel = 8) to align embeddings at 12.5 Hz.

● Compute cosine distance between the first quantizer 
output and transformed WavLM embeddings.

● Linear projection (output dim: 1024) applied parallel to 
embeddings going into the decoder.

Trade-offs Observed:

● Benefit: Improves phonetic discriminability (measured 
by ABX scores).

● Drawback: Negatively impacts audio quality due to 
conflicts with reconstruction and adversarial losses

Split RVQ:

● Replace single RVQ (8 levels) with:
○ Plain VQ: Dedicated to semantic information.
○ RVQ (7 levels): Operates in parallel on acoustic residuals.

● Outputs from both summed for reconstruction.
● Decouples semantic and acoustic information, improving trade-off.



 Improving Encoding ability of Mimi



ABX (↓): Error rate on phonetic discriminability (lower is better), VisQOL (↑): Audio quality metric (higher is better) , MOSNet 
(↑): Another audio quality metric (higher is better), MUSHRA (↑): Human judgment scores (higher is better)

Results ● Adding a Transformer to the decoder significantly improves 
MUSHRA scores.

● Using a 50% quantization rate improves VisQOL scores.
● VisQOL and MOSNet show poor correlation with perceived 

audio quality.
● Adversarial-only training achieves a MUSHRA score of 81.0, 

compared to 58.8 with mixed loss functions (Encodec).

Comparison with Baselines:

● Outperforms RVQGAN (Kumar et al., 2023):
○ Achieves higher perceived quality despite lower 

bitrate and semantic modeling.
● Surpasses SemantiCodec (Liu et al., 2024):

○ Offers higher reconstruction quality while operating 
at 4× lower framerate.

Key Advantage:

● Mimi balances semantic modeling and acoustic 
reconstruction, crucial for high-quality audio generation at low 
bitrates



● Interested in modeling multiple sub-sequences, e.g. different audio codebooks, along with an optional text 
stream. Stack those sub-sequences at step s and kth subsequence as Vs,k for 1 ≤ s ≤ S and 1 ≤ k ≤ K.

● RQ-Transformer – 
– For a given sequence step s, Temporal Transformer (TrTemp) maps to a temporal context vector (zs)
– For a given sub-sequence index k, Depth Transformer (TrDepth) maps zs and Vs to logits ls,k
– Further, define      with a dedicated linear layer
– Train TrTemp, TrDepth, Lin, so that softmax is a good approximation of Vs,k conditioned on prev sub-sequences

● # steps – Temporal Transformer is always S, rather than K.S – Depth Transformer is always K

● Depth Transformer has 6 layers, 1024 dimensions, 16 attention heads

Generative Audio Modeling – Hierarchical Autoregressive Modeling



Generative Audio Modeling – Hierarchical Autoregressive Modeling



● Acoustic delay – Introduce slight delay (1 or 2 steps) between semantic and acoustic features, allowing the Temporal 
Transformer to improve quality to model inter-dependence

● Insert At,q (Q = 8, T = 12.5) sub-sequences from audio codec Mimi into multi-sequence V modeled by RQ-Transformer

● Multi-stream Modeling – Can be extended to modeling a two-speaker conversation – concat two streams of audio At,q 
(Moshi) and A’t,q (user) with acoustic delay into V

Generative Audio Modeling



Ablations on Generative Modeling – RQ-Transformer & Delay Patterns



● Moshi also models the textual representation of its own speech – increases linguistic quality over pure audio domain

● Text stream W – apply SentencePiece tokenizer to audio transcriptions corresponding to Moshi (with Whisper) to obtain 
sequence of text tokens. Insert W as first sub-sequence in V (acts as prefix to generation of semantic tokens)

● Do not use text representation from user stream (real-time is challenging; not rely on external ASR system)

● Align text with audio tokens – align with constant framerate (12.5Hz). Leverage word-level timestamp from Whisper.
– Special tokens – PAD and EPAD (never appear). About 65% padding tokens in English conversational speech.
– Wt initialized with PAD tokens until next word. EPAD inserted before next word to indicate end of padding.
– Do not insert an EPAD token if it would overwrite a text token from a previous word

● Add more delay between text sequence (Wt) and audio tokens (At,q). Controls which modality the language model will 
take decision about the content of generated audio.

Generative Audio Modeling – Inner Monologue



Inference of Moshi

The joint sequence (Eq. 6) is the target for our modeling task at train time
– At any time step s, the model is input with Vs(0, V1, …, Vs−1) and output an estimated 
probability distribution Vˆs(0, V1, …, Vs−1)

At inference time, sample from Vˆs,k for all sub-sequence indexes of Moshi’s outputs.
– For k = 1 for the text tokens corresponding to Moshi’s speech
– For k ∈ {2, . . . , 2+Q} for Moshi’s audio tokens

In an application setting, prediction for the audio coming from the user (k > 2+Q) is 
actually ignored, as the actual user audio is used instead

Generative Audio Modeling – Inner Monologue



Audio Language Modeling – Ablations
Initialized with Helium for Temporal Transformer, pretrained on audio data.

Metrics (NLL)
– sWUGGY – model’s ability to learn from a lexicon – comparing likelihood of an 
existing word and an invalid variant (e.g. “oxidation”, “accidation”)

– sBLIMP evaluates syntactic contrasts

– Spoken StoryCloze evaluates semantic contrasts by comparing commonsense 
five-sentence stories, with last one being either coherent with context or incoherent

– Spoken Topic-StoryCloze, a variant of the above where the negative continuation 
is randomly sampled among unrelated sentences (resulting in higher scores)

– MMLU for text understanding evaluation

Baselines
Audio-only models
– GSLM, AudioLM, TWIST-1.3B

Audio-only warm start from a pre-trained text LM
– TWIST 13B, VoxtLM, Spirit-LM

Multimodal – joint training on text and audio
– VoxtLM, SpiritLM



Spoken Question Answering

● Metric: Spoken Web Questions and Llama Questions

● Baselines: GSLM, AudioLM, TWIST, SpeechGPT

● Results: 



Quality and Statistics of Generated Dialogues

● Metric: samples, temp,cond, PPL, IPU, Pause, Gap, Overlap

● Results: 



Compressing Moshi and Impact on Speech Quality

● Linguistic impact of model compression on Helium



Compressing Moshi and Impact on Speech Quality

● Linguistic impact of model compression on Moshi



Compressing Moshi and Impact on Speech Quality

● Distribution of audio artifacts caused by model compression



Safety



In parallel with the development of Moshi, the paper also explores and 
evaluates the safety of the AI generated content from the following aspects.

Safety

• Toxicity Analysis

• Regurgitation Analysis

• System Voice Consistency

• Identification of the Content Generated by Moshi: Watermarking



- Adopts the ALERT benchmark (Tedeschi et al., 2024), which evaluates safety under 
multiple categories (hate, self-harm, weapon, crime, sex, substance), to evaluate the 
text content produced by the model

Toxicity Analysis

• Moshi falls into the middle of this table in terms of rank

• acceptable safety standards

• Room for Growth: possibly by incorporating larger datasets, more feedback 
loops, and more specialized training…

Results



Regurgitation refers to a model reproducing exact segments or subsequences 
from its training data during content generation

Regurgitation Analysis

 Potential Risks:
• Copyright Issues: Reproducing copyrighted or unauthorized content (e.g., music, 

speech excerpts).
• Privacy Concerns: Regenerating speech content that contains sensitive or confidential 

information.
• Credibility Problems: If users find the generated content overly "familiar," they may 

question the model's originality.

Unlike text models, speech models face unique risks: They can regurgitate not 
only text but also voice pitch, tone, and even background audio elements.



The paper evaluates the regurgitation rate under 4 conditions: the presence or 
absence of prompts, whether the data was deduplicated, whether the model was 
fine-tuned, and different sampling temperatures. The results are shown in the table 
below. 

Regurgitation Analysis

 Insights from the result:
- Sampling temperature: the values 
typically employed for generation 
(0.6–1.0) are more prone to regurgitation.

- Unconditioned and prompted 
generation: prompted scenario is more 
likely to suffer from regurgitation.
- Fine-tuning: decrease regurgitation 
rate to some extent, but it might be 
overridden.
- Deduplication: A Critical Step to avoid 
regurgitation.



A potential risk for a speech-to-speech model is unauthorized voice generation. The 
model should use its target voice and not potentially mimic the user’s voice.

Voice Consistency

 Insights from the result:

Evaluation Method:
- generated 100 hours of conversations between Moshi and a second synthetic speaker
- used a speaker verification model (WavLM) to measure how closely Moshi’s voice 
aligns with its reference voice.

- Over the generated datasets, there are 10,249 occurrences (98.7%) where the voice of 
moshi is closer to itself and 133 occurrences (1.3%) where the voice is closer to the other 
speaker.
- speaker consistency remains stable along time: no drift as the conversation goes on.



As AI-generated content becomes more pervasive, it is critical to ensure 
accountability and traceability. Watermarking provides a way to distinguish 
Moshi-generated audio from human speech or other sources, which helps prevent 
misuse, such as passing AI-generated speech as human or removing ethical 
safeguards. 

Identification of Moshi-Generated Content: Watermarking

Evaluation
The paper investigated if the two types of watermarking can be detected: 

• Signal-based watermarking: this approach embeds subtle, inaudible patterns 
into the generated audio signal using the Audioseal method.

• Generative-based watermarking for audio: this approach modifies the 
probabilities during audio generation, embedding marks directly into the token 
generation process. (watermarking the generation process itself)



Evaluation of signal-based watermarking

Insights:
• Unmodified audio achieves near-perfect detection (0.9999).

• Adding pink noise reduces detection accuracy but still yields reasonable results for 
longer audio (0.7093 for 10 seconds, 0.9019 for 1 minute).

• Detection drops with compression (e.g., RVQGAN, Mimi), making marks 
indistinguishable.



Exploration on generative-based watermarking
Insights:

• Idempotence issues: Audio 
tokens change after 
re-encoding, reducing 
detection reliability.

• Temporal shifts: Even 
moderate time offsets 
escalate the change.

• Generative watermarking 
shows potential but requires 
more robust token stability. 
Future work on resilient 
watermarking techniques is 
critical to ensure trust and 
ethical AI usage.



Thank You!


